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The development of predictive models of the cardiovascular system for use in planning treatments of 
cardiovascular disease can be accomplished using subject-specific anatomic models created from medical 
imaging data and numerical methods to model blood flow in alternative surgical and medical procedures [1].  
Challenges in this process include the limited spatial resolution of imaging techniques and the need for realistic 
outlet boundary conditions for flow simulations.  We have developed an approach to define impedance 
boundary conditions for subject-specific models based on morphometric data, which include empirical lengths, 
radii, and connectivity of blood vessels of a vascular tree.  Our method employs a stabilized, space-time finite 
element method to solve the nonlinear one-dimensional equations of blood flow in the major arteries subject to 
impedance outlet boundary conditions [2, 3].  This method is applied to model blood flow in the pulmonary 
arteries.  A subject-specific anatomic model is created from contrast-enhanced magnetic resonance angiography 
data, and flow at the inlet is prescribed from cine phase-contrast MRI data.  The radius of each outlet of the 
image-based model is used to initialize the construction of a downstream vascular tree.  Morphometric data 
from a human lung is used to define the downstream trees to the pre-capillary level [4].  The input impedance of 
this tree is computed with a recursive method based on the characteristic impedance from Womersley’s model 
of pulsatile flow in an elastic tube and published compliance coefficients [5].  Results of simulations of blood 
flow in porcine and human pulmonary arteries will be presented. 
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