LOCAL ADAPTIVE DIFFERENTIAL QUADRATURE METHOD FOR HIGH-ORDER
DIFFERENTIAL EQUATIONS

Y. Wang? Y. B. Zhao® and G. W. Wei®®

®Department of Computational Science,
National University of Singapore, Singapore 117543

PDepartment of Mathematics
Michigan State University, East Lansing, M1 48824
wei @math.msu.edu

High-order differential equation arises in many fields and requires the numerical solution [1]. Numerical
solution of high-order differential equations with multi-boundary conditions is discussed in this work.
Motivated by the discrete singular convolution (DSC) algorithm [2], the use of fictitious points as additional
unknowns is proposed in the implementation of locally supported Lagrange polynomias. The proposed method
can be regarded as a local adaptive differential quadrature method (La-DQM), which is similar to the recent
differential quadrature methods [3,4] in many aspects. Two examples, an eigenvalue problem and a boundary-
value problem, which are governed by a sixth-order differential equation and an eighth-order differential
eguation respectively, are employed to illustrate the proposed method. Results are compared with those in the
literature [5,6]
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