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We present a technique for the rapid and reliable prediction of linear-functional outputs of (second-order)
elliptic partial differential equations with affine parameter dependence. The essential components are (i)
rapidly convergent global reduced-basis approximations — (Galerkin) projection onto a space Wy spanned
by solutions of the governing partial differential equation at N selected points in parameter space; (i)
a posteriori error estimation — relaxations of the error-residual equation that provide inexpensive yet
sharp bounds for the error in the outputs of interest; and (74) offline/online computational procedures —
methods which decouple the generation and projection stages of the approximation process. The operation
count for the online stage — in which, given a new parameter value, we calculate the output of interest
and associated error bound — depends only on N (typically very small) and the parametric complexity of
the problem.

In this paper we develop new a posteriori error estimation procedures for noncoercive linear, and certain
nonlinear, problems that yield rigorous and sharp error statements for all N. We consider five particular
examples: the Helmholtz (reduced-wave) equation; a cubically nonlinear Poisson equation; the symmetric
eigenvalue problem; Burgers equation; and the Navier Stokes equation. The Helmholtz example, as well
as the eigenvalue, Burgers, and Navier Stokes problems, introduce our new lower bound constructions
for the requisite inf-sup (singular value) stability factor; the cubic nonlinearity, as well as the Burgers
and Navier Stokes problems, exercises symmetry factorization procedures necessary for treatment of high-
order Galerkin summations in the (say) residual dual-norm calculation; the Burgers and Navier Stokes
(respectively, eigenvalue) problems illustrate our accommodation of potentially (respectively, provably)
multiple solution branches in our a posterior: error statement. Numerical results are presented that
demonstrate the rigor, sharpness, and efficiency of our proposed error bounds, and the application of these
bounds to adaptive (optimal) approximation.



