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When a Lagrangian finite element formulation is used in problems where the material becomes severely 
distorted, the elements become similarly distorted since they deform with the material. In such a case the 
original mesh may no longer provide a good discretization of the problem and must be replaced by a mesh of 
better quality before the analysis can continue.  
 
This presentation describes a new mesh smoothing algorithm that can be used to periodically improve the mesh 
quality during the solution process. The algorithm assumes that the new mesh uses the same topology as the 
original mesh but nodal locations are adjusted to avoid element distortion. Such algorithms are typically used in 
combination with Arbitrary Lagrangian Eulerian (ALE) formulations. In this presentation, however, the 
algorithm is applied to the acoustic domain in coupled structural-acoustic analysis. The acoustic elements in our 
formulation do not have mechanical behavior and, therefore, cannot model the deformation of a fluid when the 
structure undergoes large deformation. As long as the boundary between the structure and fluid does not 
experience large deformation, the structural-acoustic calculations can be performed with reference to the 
original configuration. However, when the geometry of the acoustic domain changes significantly as a result of 
structural loading, the original acoustic mesh must be updated along with the structure. An example is the 
interior cavity of a tire subjected to inflation, rim mounting, and footprint loads. 

 
The mesh smoothing equations are solved explicitly by sweeping iteratively over the adaptive mesh domain. 
During each mesh sweep, nodes in the domain are relocated based on the positions of neighboring nodes 
obtained during the previous mesh sweep. The new position, xi+1, of a node is obtained as 
 

xi+1 = X+ui+1 = NN xN
i 

 
where X is the original position of the node, u is the nodal displacement, xN are the neighboring nodal positions 
obtained during the previous mesh sweep, and NN are weight functions obtained from a least-squares 
minimization procedure that minimizes displacement in the original configuration. In other words, the algorithm 
assumes that the original mesh is an appropriate discretization of the problem.  
 
The presentation will focus on deriving a suitable set of weight functions and demonstrating the effectiveness of 
the algorithm through illustrative examples. 
 
 


