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     A method to gain a global superconvergence has been developed for meshfree methods [1, 2] 
and for the MPFEM – a finite element-based particle method [3].  We first discuss the definition 
of “superconvergence”.    In general a particle method approximates solution via the relation: 
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where ( )zφ , ( )xc , and iv∆  are window function, correction function, and a weight at iy .  The 
relation (1) can be interpreted as the transformation from a set of samples iu  to the approximated 

solution hu  through the filter F.  The convergence rate of hu , e.g. L2 norm, is determined by the 
functional properties of ( )xc  and ( )xyi −φ  through the satisfaction of the imposed consistence 
conditions [4-6].  We assume that ( )xc  is a mc order polynomial and the degree of freedom of 

( )zφ , i.e., the number of the undetermined constants in ( )zφ , is mφ.  Then, in general the 
convergence rates of (1) for ( )xu h  and its nth derivatives, denoted as “m” and “mn”, respectively, 
are:       1++= φmmm c ;   nmmm cn −++= 1φ   

For example, when ( )zφ  is defined by a 5-order spline function (mφ=0) and ( )xc is a linear 
function(mc=1), usually the L2 norm for the meshfree methods with (1) is 2.   
     Analogue to the superconvergence analysis in finite element [6], we define a particle method 
with superconvergence when 
  1++> φmmm c   and/or  nmmm cn −++> 1φ  
In the proposed method, the global superconvergence is achieved by a two-level interpolation 
scheme that allows the satisfaction of higher order reproducing condition for given mφ  and  mc.  
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